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Equivalence of Dirac and Maxwell Equations and
Quantum Mechanics

Jayme Vaz, Jr."? and Waldyr A. Rodrigues, Jr.!
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In this paper we present an analysis of the possible equivalence of Dirac and
Mazxwell equations using the Clifford bundle formalism and compare it with
Campolattaro’s approach, which uses the traditional tensor calculus and the
standard Dirac covariant spinor field. We show that Campolattaro’s intricate
calculations can be proved in few lines in our formalism. We briefly discuss the
implications of our findings for the interpretation of quantum mechanics.

1. INTRODUCTION

The Maxwell equations and the Dirac equation are among the most
celebrated equations of physics. Several presentations of the Maxwell
equations in (matrix) Dirac-like “spinor” form can be found in the literature
[see Rodrigues and de Oliveira (1990) for discussion], some of them moti-
vated to give a “‘first quantization” interpretation of Maxwell fields. The
possibility of an intimate relationship between the Maxwell and Dirac fields
is an object of serious speculation since it could provide an answer to a
long-standing question: what is an electron?

That possibility has been considered by us in two previous papers (Vaz
and Rodrigues, 1992; Rodrigues and Vaz, 1992) by using the Clifford bundle
formalism. Among the many advantages of this approach we can consider
its simplicity and the fact that with it the Maxwell and Dirac fields are
represented by objects of the same mathematical nature. In Vaz and
Rodrigues (1992) we show that starting from the free Maxwell equations
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946 Vaz and Rodrigues

and by writing®
F=byy'y*y* (1)
for the electromagnetic field [where ¢ is a Dirac-Hestenes (DH) spinor
field] that the nonlinear DH equation®*
YHo,y Y’ + F(P) =0 ()
with
F() = vy v’ @)W y) (3)
is equivalent to the free Maxwell equations, and that there are two solutions
i of equation (2) which satisfy the DH equation (which is the representative
of the standard Dirac equation in the Clifford bundle over Minkowski
spacetime). These two solutions were naturally identified as “electron” and
“positron” solutions. In Rodrigues and Vaz (1992) we generalized our
approach in order to obtain localized ““electron” solutions. In Section 2 we
briefly review our approach.

The possibility of an intimate correspondence between Maxwell and
Dirac fields has also been considered by Campolattaro (1980a,b, 1990).
Campolattaro (1980a) deduced a nonlinear Dirac-like spinor equation (for
the usual standard Dirac covariant spinor field) equivalent to the Maxwell
equations. For the case where the electromagnetic current J = 0 the equation
is (see footnote 4)

Sa

Y
y#9, ¥ = —iy* E—{Im(3,¥¥) — y° Im(a, T y*¥)}¥ (4)
p
where
Im(aM‘I’ys‘I’) =-3,Viy’¥ —Viy’3,¥) (5)
_ 1 - .
Im(3,¥¥) = - (3, 9% - ¥o,¥) (6)

and « is the “complexion” (Misner and Wheeler, 1957) of the field F*” in
the given point. We also have

Ty Ty
cos o =——, sin a = Y (7
p p
p2 = (TV)+ (Ty*P)> (8)

so that O, = ¥V and Q, =TT are the invariants in the Dirac theory.

3This is always possible according to the theorem of Rainich-Misner—-Wheeler (see
Appendix B).

“In equations (1)-(3), etc., y* are the generators of the local Clifford algebra R, ; of the
Clifford bundle. The y* in equation (4), etc., are the usual Dirac matrices in the standard
representation. We shall use the same symbol for both objects, since no confusion appears
in the text. '
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Now if we compare equations (2) and (4) we see that they look very
different. However, Campolattaro started his demonstration of the
equivalence between equation (4) and the Maxwell equations by proving
that any given electromagnetic field F** can be written as

F* = 30ylty e 9)
where y™y" =3y, ¥y 1=3(v"y" - ¥"¥").

Despite the apparent difference between equations (2) and (4) and the
apparent similarity between equations (1) and (9), a difference exists. In
fact, while ¢ in equations (1)-(2) is a DH spinor field, i.e., an operator
spinor field according to Figuciredo et al. (1990a,b), ¥ in equations (4)
and (9) is a standard Dirac covariant (SDC) spinor field, according to
Figueiredo et al. (1990a,b). Thus ¥ is the usual Dirac conjugate ¥ =y * 7°.
In Rodrigues and Oliveira (1990) it is shown that ¥ can be identified with
¥ = e, where e =5(1+y°) esec €I(M, §) is a global idempotent field.

It is reasonable to suppose that equations (2) and (4) are different
representations for the same equation. This is indeed the case. We prove
this explicitly in Section 3, and since these two equations are the same, (4)
has plane wave solutions, as we shall see. It is very difficult to see this fact
directly from equation (4), but from equation (2) this is a trivial task. Also,
with that proof, our theory (Vaz and Rodrigues, 1992; Rodrigues and Vaz,
1992) can now be translated into “traditional” mathematical terms.

2. THE CLIFFORD BUNDLE APPROACH

Let ¥/(M, g) be the Clifford bundle of differential forms over Mink-
owski spacetime. The spacetime algebra is the typical fiber of the bundle
(Rodrigues et al, 1989; Rodrigues and Figueiredo, 1990; Maia et al.,
1990). Let {e,.} € sec TM be a basis of TM and {y*}esec T*M =sec A’M <
sec €I(M, g) the dual basis, satisfying y*y"+y"y*=29""; 5*" =
diag(1, ~1, —1, —1). The Dirac operator 9 acting on sections of €I(M, g) is
d=d — 8, where d is the differential and & the Hodge codifferential operator,
and 9=d — 8 = y*V , where V is the Levi-Civita connection of g = 7,,,y*®
y" (§=n"e.®e,). We can choose for simplicity {y*} such that V,=4,;
thus 6= y*3,. Now, in this formalism, the free Maxwell equations dF =0
and 8F =0 can be written as

oF=0 (10)

where the electromagnetic field F € sec A>(M) < sec 6I{M, §). This form of
the Maxwell equations is originally due to Riesz (1958). On the other hand,
the Dirac equation for a free electron can be written in this formalism as

mc
8¢7172+7 gy’ =0 (11)
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which is due to Hestenes (1966, 1967, 1975). The DH spinor field ¢ ¢
sec(A°(M)+ A’ (M)+ A*(M)) = sec (M, §) can be written in the canoni-
cal form

g =p'/? e?PI2R (12)

where p, Besec A°(M)csec €I(M, §), and Vxe M, ReSpin,(1,3)=
SL(2,C), i.e., RR*=R*R =1, where * (called reversion) is the principal
antiautomorphism in R,; (Figueiredo et al, 1990a,b). Finally y°> =
v%919%y% is the volume element.

Now, if we look for a solution of the free Maxwell equations (10)
having the form given by equation (1), a simple substitution of equation
(1) in equation (10) gives equation (8). Despite the fact that equation (2)
is a nonlinear equation, we have shown (Vaz and Rodrigues, 1992) that it
possesses plane wave solutions that satisfy the DH equation (11), namely:

‘l’~=pl/2 eV B2 _e—vzy‘(p-X/ﬁ) (13)

1/2 e758/2 2yNpx/h) (14)

Ye=p y'y'e”
which were identified (with =0 for ¢ . and == for  _) as the “electron”
and “positron” solutions, respectively. We have also proved that ¥.- and
Y~ rotate around the streamlines of an “electromagnetic fluid” with the
same frequency w,=2mc’/# in different rotation senses and that such a
rotation motion is the origin of mass in this theory—a conclusion also
obtained by Hestenes (1991), but with a different point of view. In Rodrigues
and Vaz (1992) we generalized our approach in order to obtain localized
“electron” solutions by proving that each component ¢, e """ of the
DH spinor field satisfies a nonlinear Klein-Gordon equation with non-
linearity of quantum potential type, that is,

me\> e,

D!lf+< h) ¥ 0 ¥ (15)
Our approach to these localized solutions is to be compared with the ones
of Gueret and Vigier (1982a-c), Mackinnon (1978, 1981), and Barut (1990).
Moreover, since the ¢ field in our approach is of electromagnetic nature,
we have an intimate relationship between ¢ and the behavior of phase-
locked cavities studied by Jennison (1978) and which have the inertial
properties of classical particles.

3. PROOF OF EQUIVALENCE BETWEEN EQUATIONS
(2) AND (4)

In order to prove that equations (2) and (4) are the same equation, we
must prove that the components of the spinor field ¢ satisfying equation
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(2) and the components of the spinor field ¥ satisfying equation (4) satisfy
the same equation. Thus we shall first write equation (4) in terms of its
components, then we shall write equation (2) in terms of its components,
and finally we compare them.
Let us calculate the term in braces in equation (4). For
A
| v S
lII_ ] \I,_(dllﬁ 'ﬁz;‘d’m‘d&) (16)
W3
Ya

we have that (the bar over the components denotes complex conjugation)

Im(3, ¥¥) =';’ L3, — §18,00) + (3,005, — 2 02)

— (30 — Y30, 005) — (B, Watba — WadPa) 1= 7’ £ (17)

- —1 _ — _ —
Im(3, ¥y’¥) = 7'[(5;#/1(//3 + 30,01) + (3, Watha+ a8 Y1)

_ _ — — -1
- (8#1703(/1] - dlla,u,l#3) - ((9,_”1/4‘#2"' dlzay.d,‘l)] = -5_ n (18)
and then
(0 (0
(Im(3,7Y) - y* Im(3, Ty ) == Y2 )+ o 2 (19)
2 U3 ¥
s U,
Thus equation (4) is explicitly
¥ &+ iy X1
7% T S B2 W e
ua R — e 20
PO T 27 o et T 27 o L (20)
A Sy + i, X4

Now we shall write equation (2) in terms of components. In the
Appendix we show that a DH spinor field has the following matrix
representation:

Y, ‘422 '7”3 A Jl 1/72 ";3 _l/—/—4
. ¥, Uy “/73 * —¢ ¥ ~q s
= —- - N = — - - - 2
w l//3 (84 ’»[/1 —lliz ll’ —1/13 _‘//4 ‘//1 ¢’2 ( 1)
Yo —ds s '7[’1 ‘l/f4 s 2 ¥

902/32/6-5
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Since we also have

¢¢=—{? f) (22)
the calculation of %(¢) is a simple task. We have
Ui b U i
Yo ¥ ¥~
Also,
U b g g [ G o o
e R R
Y U Y Ui \SOua O 9 A
A B C D
=
-D C B -A
where we have defined
A= 10,40 — 20,82 — Wsd st Yaduiba (25)
B =8+ §od iy — Y39, — 49,05 (26)
C = —n9,3~ 20,0a+ Y30,81 + b o (27)
D =3, at Yodubs + Y0, — had ¥ (28)
Since ¢y*y'=—yy'y® we have, using equations (24) and (23),
A B C D\ [flh o ¥ —¥
Py Y. yy' = c —g _é) _i_ Zz :://;i Zj‘: gz
-D C B —“Al\¢Ys +¥5 4y 4
E F G H
e u = £)° @
H -G -F E
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where we used
E = Ay, + By, + Cirs + Dy,
F = Ay, — B, — Cii+ D
G =AYzt By, + Cy, + Difs,
H =—A,+ Bj;+ Ch,— Dijs,

951

(30)
31)
(32)
(33)

Finally, since zﬁg&*:peys‘g and using equation (29) we have for

equation (2)
—¥°B

yHou=—y" P

(34)

Now if we introduce the expressions for A, B, C, D into the ones for

E, F, G, H and remember that
Q,= 11’1‘,[71 + 4’2'172" ‘,03‘;3 - l//4l/74

Q,= i(¢’1¢73+ 1112154_ ¢3lﬁ1 - ¢41/72)

then after a straightforward but tedious calculation we arrive at

b1=E =&l + s+ Q0,4+ 00,0,

¢2 — _F == f{)l[2+ 1](/]4_"918,_,,[//2“*_ iQZB,u.lIIAt

b3=G =&+ +840,.05+ Q50,44
ba=H = &lry+ mi+ Q10,04+ Q59,4

and

‘151 ‘(52 (!53 ¢4

&= b2 ¢E1 b4 _d_>3
‘Jbs ?4 ¢1 _éz
ds —d2 b2 P
i X X5 X o~
_ X2 )gl Xa "Ajs +Qla” 128 (61
X3 X4 X1 —X2 s l{’-4
Xs —Xz X2 X1 Yy —ys
s s U =
N e A

b —Ye s Y
Y Y. s

s
s
U
U

W
s
=i

Y

(35)
(36)

(37)
(38)
(39)
(40)

(41)
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The last matrix can be written as

Vaz and Rodrigues

_‘/Zz ¢3 11_7.4
‘r’il ‘//4 _‘lis (42)
'th ¥ _lgz

_‘//3 ‘!’2 ¢1

of the two latter matrices in equation (41) is

s
bs
¥
¥

:Ql_

¥s l/Za, ¥y “lEz 1 0\ [y,
e 0 ¥ | o 1}{v.
A 2 I P "
Yo Wy Y =Y, 0 1 Uy
in such a way that the sum
lljl _%2 ¢l3 ‘1[24
ap v B ow -u
ll/3 (/14 (701 _‘/.l_Z
Yo —¥5 ¥ 2
i 0 ¥~
0 i Y
+Q -
g i 0 O i 1114
0 i Ya —Y
=(Q, _ngz)aul//
Now if we use equation (21) we find that
Q 0 iQ, 0
0 Q 0 iQ
* _ 1 2
i i, o0 0 0
0 i, 0 O

s
—s
—‘/72
A
(43)
7592 (44)

and using equation (44) in equation (43) and then in equation (41) we have

that

@ = x + (Y*)3, = x +pe” P,

(45)

where y is the first matrix on the rhs of equation (41).
Introducing this result in equation (32), we get

~y°B
YO = —% y o X
or, in terms of components,
W, _Jz 3 474
v¥3,, 12 lEl a4 _1/23 =_1 - e 7P
Y3 Yo 1~ 2 p
UM _‘/;3 ¥ l/71

X2
X3

(46)

X2 X3 Xa
X1 Xa TX3
Xa X1 —X2

Xz X2 X

(47)
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Now we compare equations (20) and (47): they are the same equation!’
Thus we have proved that equations (2) and (4) are one and the same
equation. The reader is invited to compare our approach to equation (2)
in Vaz and Rodrigues (1992)—just one line of calculus— with that one of
Campolattaro (1990) to equation (4)—six pages of calculus.

Note the identification of the *‘complexion” « with 8, whose values
f=0 and f=n distinguish electrons from positrons in the Dirac theory
(Vaz and Rodrigues, 1992; Hestenes, 1991).

4. PLANE WAVE SOLUTIONS OF THE
NONLINEAR EQUATION

It is only a matter of verification to see that plane waves are solutions
of equation (20) or equation (47). To simplify the calculations, we shall
consider the rest frame. The equations for the components are

50!//1=—zl—p[COSB(éllll+W3)—isinﬁ(ftﬁa+m//1)] (48)

1

Otz = ‘2_5[005 B(&po+ m,) — i sin B(EYs+ )] (49)
1 .

30‘&3:‘5;[005 B(&s+ ) — i sin B(&, + )] (50)
1

301//4:"5[005 B(&st+mpy) — i sin B(E,+ ipy)] (51)

where, in accordance with equations (17) and (18),

g = (ap‘/;llljl - !1[716;1,(//1) + (8M¢72!1[l2 - ‘Eza#lpz)

- (ap."l;3"/f3 - lﬁz.au*//s) - (3;#741/’4 - l/;4ap,lll4) (52)
n= (5;;1/71(//3 - 'J733;L‘/11) + (5,&52‘/14 - l/74au¢’2)
— (0,3 + U10,03) — (8, 0at + U120 ,0) (53)

Now it is trivial to verify that

\I,(l")=\/_p' e—imczt/h. \I;(z“)=\/'5 e—imczr/ﬁ (54)

O OO -
S O = O

*More precisely, each column of equation (17) contains the same information as equation (20).
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are solutions of the above equations (48)-(51) provided that
B=0 (55)
and that
P =vp

ez‘mczx/ﬁ; 1Ifg}—)___\/‘ﬁ ez‘mczz/fz (56)

S = OO
O O O

are also solutions of equations (48)-(51) provided that
B=ma (57)

These solutions (54)-(56) are written in the spacetime algebra as

!/,(1—)2\/"5 e?’B/2 e—vzv‘mczt/ﬂﬂzo (58)
YS7 =Vp e PPy yl e I (59)
$(+)_\/_ey 3/2 1,2 eyzy‘mczt/hlﬁ=w (60)
P57 =p €7 P2y ylyly? v I mn| (61)

which can be easily verified by right multiplication by the idempotent
e =3(1+v°) according to the method described in Rodrigues and Oliveira
(1990).

5. CONCLUSIONS

We cannot but be surprised by the fact that equation (4) exhibits plane
solutions. Indeed it is very difficult to deal with it, so that the proof requires
an extensive calculus. On the other hand, the same equation in the Clifford
bundle, equation (2), is simple, and the fact that it exhibits plane wave
solutions can be easily seen in this case. The essential difference between
our method and the one of Campolattaro is that a DH spinor field can be
represented as a matrix which has an inverse, while the SDC spinor field
used by Campolattaro is represented by a one-column matrix which does
not have an inverse. Thus Campolattaro’s method is expected to be more
complicated.
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APPENDIX A. MATRIX REPRESENTATION OF THE DIRAC-
HESTENES SPINOR FIELD

In this Appendix we give a matrix representation for the DH spinor
field. In the Dirac representation we have

1 0
. [0 1 (1 0
[ -1 0 “(o —n)
0 -1
0 1
- 10}y /0 o
v 0 -1 —(—0', O)
—1 0
0 —i
R i 0} (0 o,
[ 0 i <—O’2 0)
—-i 0
1 0
5 0 -1} {0 o
Y7 -1 o0 _(—0'3 0)
0 1

Since ¢ € sec(A°(M)+A*(M)+ A*) = sec €I(M, ), we have that
Yy=al+ ao ¥y + apy’y? + apy"y’ + a,y'y?
+ a4 anyy + oy vy’
but in this representation

0 o 0 o 0 o
0.1 __ 1y, 0.2 _ AN 0.3 _ 3
vy (0'1 0>, vy (0'2 0)’ vy <U3 O)

12_ .93 0 ) 1. 5_ %2 O>' 2 3___<01 0)
Y7 l<0 0_3): Y'Y 1(0 0_2, YV 10 o

Thus we have

b~ s
by Y s Y
s a1 ¥
b —¥s ¥
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where
Y= ap—iag
= —ay;—iay;
Y3 = a3 — ilo123
s = ap +iag,

For ¢* =y y° we have then

1/71 1/72 _J’-s -d74
¥ U Y
¥ —Ye U W
g s —¢ Py

g* =

APPENDIX B. THEOREM OF RAINICH-MISNER-WHEELER

In this Appendix we give a proof in terms of spacetime algebra of the
theorem of Rainich-Misner- Wheeler (Rainich, 1927; Misner and Wheeler,
1957) because of its fundamental importance for this work.

If we define an extremal field as a field for which the magnetic (electric)
field is zero and the electric (magnetic) field is parallel to one coordinate
axis, the theorem of Rainich-Misner-Wheeler says that: “At any point of
Minkowski spacetime any nonnull electromagnetic field can be reduced to
an extremal field by a Lorentz transformation and a duality rotation.”

Let F=3F,,v* A y” esec A>(M) c sec 6I(M, §) be the electromagnetic
field. The invariants of F are given by F>=F- F+ F A F. In terms of Pauli
algebra R; o= Ri;wehave F=E+ fH, where E= E;o,, H= Hio;, 0’ = v'y°,
i=0'0a’ (the o' are the generators of R;,), and we have

F-F=E>-H> FAF=2{E-H
Let us consider a duality rotation of F by an angle a, that is,
F'=e”*F=cos aF+ vy Fsin a

The invariants of the fields are changed under a duality rotation in
such a way that from

F12= e275aF2
we have
F' - F'=cos2a(F- F)+sin2ay’(F A F)
F'A F'=cos 2a(F A F)+sin 2ay’(F- F)
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or, by writing F=E'+ i,
E?—H"”=cos 2a(E’—H?) —sin 2a2(E + H)
2(E’ - H') = cos 2 2(E - H) —sin 2a(E*> - H?)
Now we can choose « in such a way that
E -H=0
that is,

Y (FAF) 2(E-H)
(F-F)  H-E

tan 2a =

and then for F'- F' we have

EIZ . HrZ =4 [(E2 . H2)2+ 4(E . H)Z]I/Z
where the different signs come from the fact that tan ¢ has period = and
cos(¢ + )= —cos ¢, so that the angles ¢ and ¢ + n correspond respectively
to E?~H?<0 and E?-H?>0. Indeed, since 2o=¢+n and
o=¢/2 +n/2, so that

5 5 5 5
eV = g? ®/2 e Tr/2=ev $/2,.5

Y

the duality rotation by /2, i.e., ¢” "/ = y°, transforms an electric field into
a magnetic one and vice versa.

Now, a well-known (Doubrovine et al., 1987) theorem says that: “If
E' -H' =0, then there exists a Lorentz transformation R such that F"=
RF'R*=E"+iH" and we have (a) if E*—H?>0, then E'#0 and
H"=0; (b) E?—H?<0, then E'=0 and H"#0.” Let us find this trans-
formation explicitly. Consider v=vo'; then for a Lorentz transformation

[')’ - (1 _BZ)A1/2]
E}=E!|; Ej=vy(E}+BH}); Ej=y(E}—BH)})
H!/=H}; Hj=y(H}{+BE}); 3= y(E3—BE3)

Considering a duality rotation such that E'- H'=0 and E*~H?<0
and choosing ¢” and o such that E= Eo” and H=H¢”® and B=v/c=
E/H, we have

E{=Ej=Ei=0; H/=H]=0; Hj=(H*-E)"?
Thus, by defining

we have shown that
[exp(y’@)]R*FR = —iHa’ = Hy'y?
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from which it follows that
F =[exp(y’&)]R(Hy'y*)R*
or, by writing
H=bp, $=+Vplexp(y’a/2)IR
that
F=byy'y"y
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